Greener Journal of Biochemisty and Biotechnology

Open Access


 


Subscribe to 

our monthly News letters
Click







Garba et al

Greener Journal of Biochemistry and Biotechnology Vol. 4 (2), pp. 007-026, May 2017.

  2384-6321© 2017 Greener Journals

Research Paper

Manuscript Number: 051517061


(DOI: http://doi.org/10.15580/GJBB.2017.2.051517061)

 

An Overview of the Substrates used in Microbial Fuel Cells

 

N. A. Garba*, L. Sa’adu, and M. D. Balarabe

 

Federal University Gusau, Zamfara State, Nigeria.


Abstract


This paper provides a mini review on the substrates used in microbial fuel cells (MFCs) either for bioelectricity generation or simultaneous production of bioelectricity and resource recovery/waste treatment. Recent substrates that are being used for simultaneous production of bioelectricity and resource recovery as well as the key challenges for bioelectricity production in an MFC are also discussed. The paper expects to give an informative overview of the current development in the substrates used in MFCs, and to encourage more thinking and investigation towards further development of efficient processes for improved bioelectricity production and resource recovery in MFCs.

 

Keywords: Microbial Fuel Cells, Substrates, Bioelectricity, Power Density, Coulombic Efficiency.


Post-review Rundown

View/get involved, click [Post-Review Page]


References


Ahmad, F., Atiyeh, M. N., Pereira, B., Stephanopoulos, G. N. (2013). A review of cellulosic microbial fuel cells: Performance and challenges. Biomass and Bioenergy, 56, 179–188.

 

Arbia, W., Arbia, L., Adour, L., and Amrane, A. (2013). Chitin Recovery Using Biological Methods, Food Technol. Biotechnol. 51 (1) 12–25 (2013).

 

Baicha, Z., Salar-García, M. J., Ortiz-Martínez, V. M., Hernández-Fernández, F. J., de los Ríos, A. P., Labjar, N., Lotfi, E., and Elmahi, M. (2016). A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells. Fuel Processing Technology, 154. pp. 104–116.

 

Bavasso, I., Di Palma, L., and Petrucci, E. (2016). Treatment of Wastewater in H-Type MFC with Protonic Exchange Membrane: Experimental Study of Organic Carbon and Ammonium Reduction with Electrochemical Characterization. Chemical Engineering Transactions, 47, 223-228. DOI: 10.3303/CET1647038.

 

Boghania, H. Kimb, J. R., Dinsdalea, R. M., Guwya, A. J., Premiera, G. C. (2017). Reducing the burden of food processing washdown wastewaters using microbial fuel cells. Biochemical Engineering Journal, 117, pp. 210–217.

 

Brooks, T., and Keevil C. W.  (1997), A simple artificial urine for the growth of urinary pathogens. Appl Microbiol Letters, 24: 203–206.

 

Catal, T., Li, K., Bermek, H., and Liu, H. (2008). Electricity production from twelve monosaccharides using microbial fuel cells. Journal of Power Sources, 175 (1), 196–200.

 

Chang, S., Liou, J., Liu, J., Chiu, Y., Xu, C., Chen, B., and Chen, J. (2016). Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells. J. of Power Sources, 336, 99-106.

 

Choi, S. (2015). Microscale microbial fuel cells: Advances and challenges. Biosensors and Bioelectronics, 68, 8-25.

 

Chouler, J., Padgett, G. A., Cameron, P. J., Preuss, K Titirici, M., Ieropoulos, I., and Di Lorenzo, M. (2016). Towards effective small scale microbial fuel cells for energy generation from urine. Electrochimica Acta, 192: 89–98.

 

Damiano L, Jambeck J. R, and Ringelberg D. B. (2014). Municipal solid waste landfill leachate treatment and electricity production using microbial fuel cells. Appl Biochem Biotechnol, 173(2): 472-85. doi: 10.1007/s12010-014-0854-x.

 

Du, Z., Li,  H., Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, 464–482.

 

Doherty, L., and Zhao, Y. (2015). Operating a two-stage microbial fuel cell–constructed wetland for fuller wastewater treatment and more efficient electricity generation. Water Science & Technology, 72 (3), pp. 421-428; DOI: 10.2166/wst.2015.212.

 

Dresselhaus, M., and Thomas, I. (2001). Alternative energy technologies, Nature, 414, 2001, pp. 332-337.

 

Edem D. E., Oforkansi B. C., and Evbuomwan B. O. (2015). Effects of Novel Substrates in electricity generation in a mediator-less microbial fuel cell. Greener J. of Science Engineering and Technol Research, 5 (1): 011-019, http://doi.org/10.15580/GJSETR.2015.1.061715081.

 

Frew, B., and Christy, A. D. (2006). Use of Landfill Leachate to Generate Electricity in Microbial Fuel Cells.  American Society of Agricultural and Biological Engineers Annual Meeting. doi: 10.13031/2013.21030.

 

Ge, Z., Li, J., Xiao, L., Tong, Y., and He, Z. (2014). Recovery of Electrical Energy in Microbial Fuel Cells. Env Sci & Technol Letters, 1, 137−141.

 

Gezginci M., Uysal Y. (2016) The Effect of Different Substrate Sources Used in Microbial Fuel Cells on Microbial Community. JSM Environ Sci Ecol 4(3): 1035-1042.

 

Gil, G., Chang, I., Kim, B., Kim, M., Jang, J., Park, H. and Kim, H. (2003). Operational parameters affecting the performannce of a mediator-less microbial fuel cell, Biosensors and Bioelectronics, 18, pp. 327-334.

 

Greenman, J., Gálvez, A., Giusti, L., and Ieropoulos, I. (2009). Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter.  Enzyme and Microb Technol, 44 (2), 112–119.

 

Huang, L. and Logan, B. E. (2008). Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Appl Microbiol and Biotechnol, 80: 655–664. DOI 10.1007/s00253-008-1588-x.

 

Huang, L., and Logan, B.E (2008). Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiol and Biotechnol, 80, (2): 349–355. doi:10.1007/s00253-008-1546-7.

 

Ieropoulos, I. A., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuisha, C. and Greenman, J. (2013). Waste to real energy: the first MFC powered mobile phone. Phys.Chem. Chem. Phys., 15, pp. 15312-15316.

 

Ieropoulos,  I. A. Greenman, J. and Melhuish, C. (2013). Miniature microbial fuel cells and stacks for urine utilisation. International Journal of Hydrogen Energy, 38(1), pp. 492-496.

 

Jafary, T., Najafpour, G. D., Ghoreyshi, A. A., Haghparast, F., Rahimnejad, M., and Zare, H. (2011). Bioelectricity power generation from organic substrate in a Microbial fuel cell using Saccharomyces cerevisiae as biocatalysts. World Renewable Energy Congress 2011; 3-13 May 2011, Linkoping, Sweden, pp. 1182-1188.

 

Jung, S. and Regan, J. M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microb. and Cell Physiol. DOI 10.1007/s00253-007-1162-y.

 

Kelly, P. T., and He. Z. (2014). Nutrients removal and recovery in bioelectrochemical systems: A review. Biores Technol, 153, pp. 351–360.

 

Kim, H., Park, H., Hyun, M.,  Chang, I.,  Kim, M., and Kim, B. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme and Microbial Technology, 30, pp. 145-152.

 

Kumar, G. G., Sarathi, V. G. S., and Nahm, K. S. (2013). Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells, Biosens. Bioelectron. 43. pp. 461–475.

 

Kuntke, P., Śmiech, K.M., Bruning, H., Zeeman, G., Saakes, M., Sleutels, T.H.J.A., Hamelers, H.V.M., and Buisman, C.J.N.  (2012), Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 46(8), pp. 2627–2636.

 

Lee, Y., Martin, L., Grasel, P., Tawfiq, K. and Chen, G. (2013). Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology. Environ. Technol., 34 (19), 2727-2736.

 

Li, S., He, H., Zeng, R. J., and Sheng, G. (2017). Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells. Chemosphere, 168, pp. 293-299.

 

Li, W., Yu, H., and He, Z.(2014). Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies, Energy Environ. Sci, 7, 911–924.

 

Liu, H., Cheng, S., and Logan, B. E. (2005). Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell. Environ. Sci. Technol. 2005, 39, 658-662.

 

Liu, H., Ramnarayanan, R., and Logan, B. E. (2004). Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol.38 (7), pp. 2281–2285. DOI: 10.1021/es034923g.

 

Logan, B., and Regan, J. (2006). Electricity-producing bacterial communities in microbial fuel cells, TRENDS in Microbiology, 14, pp. 512-518.

 

Lovley, D. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches, Current opinion in Biotechnology, 17, pp. 327-332.

 

Mathuriya, A. S., and Yakhmi, J. V.  (2016). Microbial fuel cells – Applications for generation of electrical power and beyond. Critical Reviews in Microbiology, 42(1), pp. 127-143.

 

Mokhtarian, N., Rahimnejad, M., Najafpour, G. D., Wan Daud, W. R., and Ghoreyshi, A. A. (2012). Effect of different substrate on performance of microbial fuel cell. African Journal of Biotechnology, 11(14), pp. 3363-3369. DOI: 10.5897/AJB11.2844.

 

Moon, H., Chang, I. S., and Kim, B. H. (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Biores Technol, 97 (4) pp. 621–627.

 

Nielsen, M., Wu, D., Girguis, P.,  and Reimers, C. (2009). Influence of Substrate on Electron Transfer Mechanisms in Chambered Benthic Microbial Fuel Cells, Environmental science & Technology, 43, pp. 8671-8677.

 

Niessen, J., Harnisch, F., Rosenbaum, M., Schroder, U., Scholz, F. (2006). Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun, 8. pp. 869–873.

 

Niessen, J., Schrdِer, U., and Scholz, F. (2004). Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch, Electrochemistry Communications, 6, pp. 955-958.

 

Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A.,Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery, Appl Energy, 168: 706–723.

 

Pant, D., Van Bogaert, G., Diels, L.,  and Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresource Technology 101, pp. 1533-1543.

 

Parikka, M. (2004). Global biomass fuel resources, Biomass and Bioenergy, 27, pp. 613-620.

 

Park, D., and Zeikus, J. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl and environ microbial, 66, pp. 1292.

 

Patil, S., Surakasi, V., Koul, S., Ijmulwar, S., Vivek, A., Shouche, Y. and Kapadnis, B. (2009). Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber, Bioresource Technol, 100, pp. 5132-5139.

 

Pham, H. T., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., van Oostveldt, P., Verbeken, K., Rabaey, K., Verstraete, W. (2008). High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microb. Biotechnol., 1, (6), 487–496.

 

Puig, S., Serra, M., Coma, M., Cabré, M., Balaguer, D. and Colprim. J. (2011). Microbial fuel cell application in landfill leachate treatment. J. of Hazard. Materials, 185, (2–3), 763–767.

 

Rabaey, K., Lissens, G., Siciliano, S. D., and Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Letters, 25: 1531–1535.

 

Rezaei, F.,  Richard, T. L., and Logan, B. E. (2009). Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid–substrate microbial fuel cells. Journal of Power Sources, 192 (2), 304–309.

 

Rezaei, F. Richard, T. L., Brennan, R. A. and  Logan, B. E. (2007). Substrate-Enhanced Microbial Fuel Cells for Improved Remote Power Generation from Sediment-Based Systems. Environ. Sci. Technol., 41 (11): 4053–4058. DOI: 10.1021/es070426e.

 

Sajana, T. K., Ghangrekar, M. M., and Mitra, A. (2014). Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell.
Biores Technol, 155, 84–90.

 

Santoro, C., Ieropoulos, I., Greenman, J., Cristiani, P., Vadas, T., Mackay, A., Li, B. (2013). Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine. Journal of Power Sources, 238, pp. 190-196.

 

Santoro, C. Ieropoulos, I., Greenman, J., Cristiani, P., Vadas, T., Mackay, A. and Li, B. (2013). Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. International Journal of Hydrogen Energy, 38(26), pp. 11543-11551.

 

Sevda, S. and Sreekrishnan, T. R. (2012). Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater. J. of Environ Sci and Health, Part A Toxic/Hazardous Substances and Environmental Engineering, 47(6), http://dx.doi.org/10.1080/10934529.2012.665004.

 

Shankar, R., Mondal, P., Singh, R., and Chand, S.(2015). Simultaneous electricity production and removal of organics from synthetic wastewater in a continuous membrane less MFC: Effects of process parameters. American Institute of Chemical Engineers Environmental Progress & Sustainable Energy, 34: 1404–1413. DOI: 10.1002/ep.12136.

 

Shankar, R., Mondal, P., and Chand, S. (2015). Simultaneous generation of electricity and removal of organic load from synthetic wastewater in a membrane less microbial fuel cell: Parametric evaluation. American Institute of Chemical Engineers Environmental progress & Sustainable Energy, 34 (1) pp. 255–264 DOI: 10.1002/ep.11941.

 

Sonawane, J. M., Yadav, A., Ghosh, P. C., and Adeloju, S. B. (2017). Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells, Biosen and Bioelectron, 90, 558–576.

 

Song, T., Wang, D.,  Han, S., Wu, X., and Zhou, C. C. (2014). Influence of biomass addition on electricity harvesting from solid phase microbial fuel cells. Int Journal of Hydrogen Energy, 39 (2), 1056–1062.

 

Thygesen, A., Poulsen, F. W., Min, B., Angelidaki, I., Thomsen, I. B. (2009). The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Biores Technol, 100, 1186–1191.

 

Xu, X., Zhao, Q., Wu, M., Ding, J., and Zhang, W. (2017). Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition. Biores Technol, 225. pp. 402-408.

 

You, J. (2016) Waste and wastewater clean-up using microbial fuel cells.  PhD, University of the West of England. Available from: http://eprints.uwe.ac.uk/26953.

 

You, J., Greenman, J., Melhuish, C., Ieropoulos, I. (2016). Electricity generation and struvite recovery from human urine using microbial fuel cells. Journal of Chemical Technology and Biotechnology, 91(3), 647-654. DOI: 10.1002/jctb.4617.

 

Zhang, E., Xu, W., Diao, G., Shuang, C. (2006). Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. Journal of Power Sources, 161. pp. 820–825.

 

Zang, G., Sheng, G., Li, W., Tong, Z., Zeng, R. J., Shi, C. and Yu, H. (2011). Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. Phys. Chem. Chem. Phys., 2012, 14, pp. 1978–1984. DOI: 10.1039/c2cp23402e.

 

Zhang, Q., Hua, J., and Lee, D. (2016). Microbial fuel cells as pollutant treatment units: Research updates. Bioresource Technology, 217, pp. 121–128.

 

Zhang, Y., Min, B., Huang, L. and Angelidaki, I. (2009). Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells. American Society for Microbiology Applied and Environmental Microbiology, 75 (11): 3389-3395.

 

Zhang Y., Noori J. S., and Angelidaki I. (2011). Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy and Environmental Science, 4(10): 4340-4346.

 

Zhang Y., and Angelidaki I. (2012). Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments. Biosensors and Bioelectronics, 35(1), pp. 265-270.

 

Zhang Y., and Angelidaki I. (2011). Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnology and Bioengineering, 108(10): 2339-2347.

 

Zhang, Y., Min, B., Huang, L. and Angelidaki, I. (2011). Electricity generation and microbial community response to substrate changes in microbial fuel cell, Biores Technol, 102 (2), pp. 1166–1173.