Greener Journal of Biological Sciences

Open Access


Subscribe to 

our monthly News letters
Click





Greener Journal of  Biological Sciences, Vol. 6 (2), pp. 020-033, February 2016.

ISSN: 2276-7762 © 2011- 2016 Greener Journals

Research Articles

Manuscript Number: 012016017


(DOI http://doi.org/10.15580/GJBS.2016.2.012016017)

 

Haemocyte Activity and Cellular Defense Reactions in Various Larval Instars of Honey Bee (Apis mellifera L.) following Natural and Experimental Bacterial Infections

 

Emad M. S. Barakat1, Mohamed O. AboKersh2, Soha A. Gomaa3

 

1 Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

2 Department of Zoology, Faculty of Science, Al-Asmarya Islamic University, Zeletin, Lybia.

3 Research and Training Center on Vectors of Diseses, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

Abstract

 

Haemocyte activity of the third, fourth and fifth larval instars of Apis mellifera (L.) was observed following artificial injection with a sublethal doses of the bacterium, Paenibacillus larvae larvae (White) the causal agent of American foul brood disease, and compared with naturally infected larvae at different disease intensities (low, medium and high). Thirteen types of haemocytes were described in healthy larvae: prohaemocytes, granulocytes, eosinophil cells, oenocytes, plasmatocytes, spindle-shaped cells, micronucleocytes, macronucleocytes, spherulocytes, pycnonucleocytes, basophil cells, adipohaemocytes and neutrophil cells. Plasmatocytes represent 60-90% of the total haemocyte population and the other cells represent 10-40%. No marked changes were observed in percentages of plasmatocytes at all examination periods post-infection in all larval stages. While, in naturally infected larvae, their percentages increased significantly at all intensities of infection. In total haemocyte counts (THCs), there was a significant increase in the third larval instar, and a significant decrease in the fourth and fifth larval instars was observed at all examination periods. In naturally infected larvae, a significant decrease in THCs was observed at all intensities of the disease. Phagocytic response was observed in all tested instars, the maximum rate was recorded at 24 h post-injection. Percentages of phagocytosis increase as the larval age increases. Also, in naturally infected larvae, phagocytosis was observed at all intensities of infection, the maximum rate was at the high intensity of infection. Injection of P. l. larvae caused a significant increase in nodule formation in third and fourth larval instars. In contrast, a significant decrease in nodule formation in fifth larval instar was observed. Nodule formation was not determined in naturally infected larvae due to the extensive destruction of bee colonies.

 

Keywords: Apis mellifera, Paenibacillus larvae larvae, haemocytes, cellular defense mechanisms, phagocytosis and nodule formation.

Return to Content      View [Full Article - PDF]


[Full Article - HTML]          [Full Article - EPUB]

Post-review Rundown

View/get involved, click [Post-Review Page]


References


Abrol DP (1996). Effect of mite parasitosis on blood counts of honey bees Apis mellifera L. and Apis cerana indica F. (Hymenoptera: Apidae). Insect Environ., 2(1):18-19.

 

Abu El-Magd AA (1992). Modifications of the haemogramme and of some cellular defense reactions of the desert locust, Schistocerca gregaria 5th nymphs after activation of the prophenoloxidase system. J. Egypt Ger. Soc. Zool., 8(A): 23-36.

 

Abu El-Magd AA, Gabry MSI, Shalaby OIM (1991). The ontogeny of phagocytic activity in haemocytes of the American cockroach, Periplaneta americana (Linne.). Sci. bull. Minia Univ., 4(1): 359-377.

 

Arnold JW, Hinks CF (1979). Insect haemocytes under light microscopy: technique. In: Insect Haemocytes (A.P. Gupta, ed.). Cambridge Univ. Press, Cambridge.

 

Bailey L, Ball BV (1991). Honey Bee Pathology. 2nd edn. Academic Press, London.

 

Barakat EMS (2000). Haemocytic changes in honey bee, Apis mellifera (L.) following injection of bacteria. Ain Shams Sci. Bull. 38: 500-517.

 

Barakat EMS (2001). The cellular defence reactions of the honey bee, Apis mellifera in response to injected bacterium, Pseudomonas aeruginosa. Ain Shams Sci. Bull., 39: 214-227.

 

Bedick JC, Tunaz H, Aliza ARN, Putnam SM, Ellis MD, Stanley DW (2001). Eicosanoids act in nodulation reactions to bacterial infections in newly emerged adult honey bees, Apis mellifera, but not in older foragers. Comp. Biochem. Physiol., 130:107–117.

 

Brehélin M, Zachary D (1986). Insect haemocytes: A new classification to rule out the controversy. In: Immunity in invertebrates. (M. Brehélin, ed.). 36-46, Speringer-Verlag.

 

Brodsgaard CJ (1998). Response of in vitro reared bee larvae to various doses of Paenibacillus larvae larvae spores. Apidol. 29: 569-578.

 

Bucher GE (1959). Bacteria of grasshopper of western Canada. Ш. Frequency of occurrence, pathogenicity. J. Insect Pathol., 1: 391-405.

 

Cameron GR (1934). Inflammation in the caterpillars of Lepidoptera. J. Pathol. Bacteriol., 38: 441-466.

 

Chen Y (2004). Transmission of Kashmir bee virus by the ectoparasitic mite Varroa destructor. Apidol. 35: 441–448.

 

Cheung PYK, Grula EA, Borton RL (1978). Haemolymph responses in Heliothis zea to inoculation with Bacillus thuringiensis or Micrococcus lysodeikticus. J. Invertebr. Pathol., 31: 148-156.

 

Faye I (1978). Insect immunity: early fate of bacteria injected in Saturniid pupae. J. Invertebr. Pathol., 31: 19-26.

 

Franssens V, Simonet G, Bronckaers A, Claeys I, De Loof A, Broeck JV  (2005). Eicosanoids mediate the laminarin-induced nodulation response in larvae of the flesh fly, Neobellieria bullata. Arch. Insect Biochem. Physiol., 59:32–41.

 

Gilliam M (1973) - Age-dependent variation of differential haemocyte counts of developing worker honeybees. J. Apic. Res., 12 (1): 61-64.

 

Gilliam M (1997). Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Lett., 155:1–10.

 

Gliniski Z, Grazgorczyk K (1995). Cellular defense reactions in the honey bee in environment non-polluted with heavy metals. Annales-Universitatis Mariae  Curie Skodwska –Sectio dd, Medici. Veterinar., 50(13): 131-137.

 

Glinski Z. Klimont (1987 a). Effect of Varroa jacobsoni infestation on the blood cells of worker bees. Medycyna Weteryunaryjna, 43(9): 546-549; (Review of Applied Entomology, 6730/88).

 

Glinski Z, Klimont (1987 b). Activity of haemocytes of worker honeybee during nature infestation with Varroa jacobsoni. Medycyna Weteryunaryjna, 43(11): 664-667; (Apic. Abst., 251/90).

 

Gregore A, Bowen ID (1998). Histopathological and histochemical changes in honey bee larvae (Apis mellifera) after infection with Bacillus larvae, the causative agent American foulbrood disease. Cell-Biol.-Internatio., 22(2): 137-144.

 

Gregory PG, Evans JD, Rinderer TDG (2005). Conditional immune-gene suppression honey bees parasitized by Varroa mite. J. insect sci. 5:7, available online: Insect science. Org 15.7 pp:5. 

 

Gunarsson SG, Lackie AM (1985). Haemocytic aggregation in Schistocerca gregaria and Periplaneta americana as a response to injected substances of microbial origin. J. Invertebr. Pathol., 46: 312-319.

 

Haseman L (1961). How long can spores of American foulbrood live? Amer. Bee J., 101: 298-299.

 

Jones JC (1962). Current concepts concerning insect haemocytes. Amer. Zool., 2:209-246.

 

Kanbar G (2003). Ultrastructure and bacterial infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol Res., 90:349–354.

 

Meshrif WS, Barakat EMS (2002). Cell mediated immunity in the Locust, Shistocerca gregaria against the bacterium, Bacillus thuringiensis. J. Egypt. Acad. Soc.Environ. Develop., 2(1): 117-130.

 

Mitro S (1994). Cellular defense reaction of the haemolymph, and description of specific cells in the seminal plasma of Apis mellifera L. Apidol., 25(4): 361-366.

 

Morse RA (1997). Honey Bee Pests Predators and Diseases. Medina, OH: A.I. Root Co., editor.

 

Mullet H, Ratcliffe NA, Rowley AF (1993). Analysis of immune defense of the wax moth, Galleria mellonella with anti-haemocytic monoclonal antibodies. J. Insect Physiol., 93(10): 897-902.

 

Papadopoulou-Karabela K, Lliads N, Liakos V (1993). Haemocyte changes in honeybee (Apis mellifer L.) artificially infected by Pseudomonas aeruginosa. Apidol. 24: 81-82.

 

Piccini C, Zunino P (2001). American foulbrood in Uruguay: Isolation of Paenibacillus larvae larvae from larvae with clinical symptoms and adult honeybees and susceptibility to oxytetracycline. J. Invertebr. Pathol. 78: 176-177.

 

Randolt K,  Gimple O, Geissendorfer  J,  Reinders J, Prusko C, Martin JM, Albert S, Tautz J, Beier H (2008). Immune-Related Proteins Induced in the Hemolymph After Aseptic and Septic Injury Differ in Honey Bee Worker Larvae and Adults. Archiv. Insect Biochem. Physiol., 69:155–167.

 

Ratcliffe NA, Gagen SJ (1977). Studies on the in vivo cellular reactions of insects: An ultrastructural analysis of nodule formation in Galleria mellomella. Tissue and Cell, 9(1): 73-85.

 

Ratcliffe NA, Rowley AF (1979). Role of hemocytes in defense against biological agents. In Insect Hemocytes: Development, Forms, Functions and Techniques (A.P. Gupta, ed.) pp. 331–414. London: Cambridge Univ. Press.

 

Rowley AF, Ratcliffe NA (1980). Insect erythrocyte agglutinines. In vitro, opsonization experiments with Clitummus extradentatus and Periplaneta americana haemocytes. Immunol., 40: 483-492.

 

Salt G (1970). The cellular defense reactions of insects. Cambridge Monographs in Experimental Biology. No 16, pp. 118, Cambridge Univ. Press. London and New York.

 

Sarag El-Dien FS (1999). Studies on the varroatosis "Varroa jacobsoni Oud." Ph. D.  Thesis, Fac. Agric., Tanta Univ., Egypt.

 

Shapiro M (1979). Changes in the haemocyte populationIn: Insect Haemocytes (Gupta AP, ed) Cambridge Univ. Press, Cambridge.

 

Shimanuki H, Knox DA (1988). Improved method for the detection of Bacillus larvae spores in honey. Amer. Bee J. 12: 353-354.

 

Sorescu I, Dragomir C (2003). Differential haemocyte count and the phagocytic index in experimental bacterial infections and in field ascosphaerosis of honey bee (Apis mellifera L.) at various ontogenetic stages. Studies-and-Researchers-in-Veterinary-Medicine, 9: 133-168.

 

Tackle GB (1988). Studies on the cellular immune responses of insects toward the pathogen Trypanosoma rangeli. J. Invertebr. Pathol., 51: 64-72.

 

Tauber OE, Yeager JF (1935). On the total blood counts of insects. I. Orthoptera, Odonata, Hemiptera and Homoptera. Ann. Entomol. Soc. Amer., 28: 229-240.

 

Tojo S, Naganuma F, Arakawa K, Yokoo S (2000). Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J. Insect Physiol., 46: 1129–1135.

 

Van-Steenkiste D (1988). The haemocytes of the honeybee: typology, blood spectrum and cellular defence reactions. Bdo.proefschrift, Doctor in de wetenschappen, Rijksuniversiteit Gent, Belgium, (Apic. Abst 1173/89).

 

Walters JB, Ratcliffe NA (1983). Variable cellular and humoral defense reactivity of Galleria mellonella larvae to bacteria of differing pathogenicities. Dev. Comp. Immunol., 7: 661-664. 

 

White GF (1906). The bacteria of the apiary with speed reference to bee disease. US Drpartment of Agriculture, Bureau of Entomology, Technical Series. 14: 50.

 

Wienands A, Strich H, Madel G (1987). Haemocytic and bacteriological aspects of the haemolymph of Apis mellifera L. (Hymenoptera, Apidae). Zentrlblatt-fur-Bakteriologie,-Mikrobilogie-und-Hygiene,-A. pp. 265, 489; Ba (Apic. Abst. 1264/89).

 

Wille H, Veechi MA (1974). Untersuchungen Uber die haemolymphe der honigbien (Apis mellifera L.) 5. Morphologie der Leukozyten und vier krankheits elementen. Mitt Schweiz Entomol. Ges., 47: 133-149.

 

Yang X (2005). Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci. USA., 102:7470–7475.

 

Zakaria ME (2007). The cellular immunity responses in the haemolymph of honeybee workers infected by American foulbrood disease. J.  Appl. Sci. Res. 3(1): 56-63.