Greener Journal of Physics and Natural Sciences

Open Access


Greener Journal of Physics and Natural Sciences Vol. 3 (2), pp. 009-020, October 2017.

  © 2017 Greener Journals

Research Paper

Manuscript Number: 092117136



Theoretical Matrix Study of Rigid Body General Motion


Anastas Ivanov


Todor Kableshkov University of Transport, Sofia, Bulgaria.


In this paper, a general motion of free asymmetrical rigid body to an absolute coordinate system is studied. The rotation component of body motion is described by using of Cardan angles. A new kind of theorem is formulated. It is called Theorem of change of generalized body impulse. New kinds of differential Lagrange equations of second gender are formulated. These are called Condensed Lagrange equations. Using that theorem and those equations, the general motion of the rigid body is successfully studied. The paper is theoretical, but it gives a base for a number of applications, for example, applications in the field of body overflow in fluid area and in the field of body vibrations. Moreover, the obtained formulas are appropriate for computer numerical integrations by contemporary mathematical programs.


Key words: rigid body, general motion, generalized body impulse, condensed Lagrange equations.

Post-review Rundown

View/get involved, click [Post-Review Page]


[1]    Суслов Г. К., Основи на аналитичната механика. Наука и изкуство, София (1976), 820.


[2]    Парс Л. А., Аналитическая динамика. Наука, Москва (1971), 636.


[3]    Златев И. С., Теоретична механика. Наука и изкуство, София (1965), 246.


[4]    Айзерман М. А., Класическая Механика. Наука, Москва (1974), 368.


[5]    Бъчваров С. Н., Николов С. Г., Златанов В. Д., Механика III ч. (Аналитична механика). Ак. Изд. на Агр. Ун., Пловдив (2016), 323.


[6]    Ценов И. А., Об одной новой форме уравнений аналитической механики. ДАН, СССР, т. 89, кн. 1, Москва (1953).


[7]    Долапчиев Б. И., Обобщение на Нилзен-Ценовите уравнения. „Известия на БАН. Математика”, № 10, София (1969).


[8]    Колев П. К., Модифицирани уравнения на Лагранж от II-ри род. Механика, Транспорт, Комуникации. бр. 1, № 0001, (2003), 1-5.


[9]    Cayley, A. A memoir on the theory of matrices. Philosophical Transactions of the Royal Society of London, vol. 148 (1858), 17-37.


[10] Palm, W. J., MatLab for Engineering Applications. McGraw-Hill, 1998.


[11] Bathe, K.-J. Finite Element Procedures. Prentice Hall, Pearson Education, Inc. (2016), 1043.


[12] Moaveni, S., Finite Element Analysis, Theory and Application with ANSYS. Prentice Hall, Inc., New Jersey (1999), 527.


[13] Logan, L. D. A First Course in Finite Element Method. Nelson, a division of Thomson Canada Limited., (2007), 836.


[14] Zhang, S., Blosh, E., Zhao X. Matrix Solvers For Computational Fluid Dynamics. Pr. 10th WSEAS Int. Conf. on Applied Mathematics. Dallas, Texas, USA, (01-03.11.2006), 289-306.


[15] Pereira R. M. S., Gajjar J.S.B. (2011), 289-306.


[16] Murray R. M., PA Mathematical Introduction to Robotic Manipulations. University of California, Burkeley (1984), 456.


[17] Goldstein H., Poole C., Safko J., Classical Mechanics. Columbia Univ., Univ. of South Carolina, (2000), 1-646.


[18] Baez J. C., Derek K. W., Lectures on Classical Mechanics. (2005), 77.


[19] Tong D., Classical Dynamics. Wilberforce Road, UK (2005), 139.


[20] Arovas D., Lectures Notes on Classical Mechanics. Department of Physics, Univ. of California, San Diego (2013), 453.