Greener Journal of Science, Engineering and Technology Research

Open Access

 


Subscribe to 

our monthly News letters
Click





Impact Calculation




Mrayyan et al

Greener Journal of Science, Engineering and Technological Research Vol. 4 (2), pp. 030-031, May 2014.

ISSN: 2276-7835 © 2011 Greener Journals

Research Paper

Manuscript Number: 030614133

 

 

Goldbach Conjecture Proof

 

 

Salwa Mrayyan*, Mosa Jawarneh, Tamara Qublan

 

 

Assistant Prof., Balqaa Applied University, CS Instructor, Balqaa Applied University Jordan.

 

 

*Corresponding Author’s Email: salwa_mrayyan @ yahoo. com

Abstract:

Very simple method of proving Goldbach Conjecture, this proof which  is simply being just algebraic process by taking the statement of the conjecture " All  positive even integers   can be expressed as the sum of two primes. Two primes  such that  for  a positive integer are sometimes called a Goldbach partition (Oliveira e Silva)"and the researcher took this statement and build up the proof.

 

Keywords: Goldbach conjecture, Prime numbers, Even number.

Reference:


http://mathworld.wolfram.com/

Dunham, W, (1990). Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, p. 83.

Dickson, LE (2005). "Goldbach's Empirical Theorem: Every Integer is a Sum of Two Primes." In History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 421-424.

Goldbach, C, (1742). Letter to L. Euler, June 7.

Hardy, GH, (1999). Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea.

Oliveira E, Silva, T "Goldbach Conjecture Verification." http://www.ieeta.pt/~tos/goldbach.html.

Oliveira E, Silva, T, (2003a). "Verification of the Goldbach Conjecture Up to 2*10^16." Mar. 24. http://listserv.nodak.edu/scripts/wa.exe..

Oliveira E, Silva, T, (2003b) "Verification of the Goldbach Conjecture Up to 6×10^(16)." Oct. 3. http://listserv.nodak.edu/scripts/wa.exe..

Oliveira E, Silva, T, (2005a). "New Goldbach Conjecture Verification Limit." Feb. 5.

Oliveira E, Silva, T, (2005b) "Goldbach Conjecture Verification." Dec. 30. http://listserv.nodak.edu/cgi-bin/wa.exe A2=ind0512&L=nmbrthry&T=0&P=3233.

Schnirelman, LG, (1939). Uspekhi Math. Nauk 6, 3-8.

Shanks, D, (1985). Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 30-31 and 222.

Pogorzelski, HA, (1977). "Goldbach Conjecture." J. reine angew. Math. 292, 1-12.