Greener Journal of Science, Engineering and Technology Research

Open Access

Mrayyan et al

Greener Journal of Science, Engineering and Technological Research Vol. 4 (2), pp. 030-031, May 2014.

ISSN: 2276-7835 © 2011 Greener Journals

Research Paper

Manuscript Number: 030614133

 

 

Goldbach Conjecture Proof

 

 

Salwa Mrayyan*, Mosa Jawarneh, Tamara Qublan

 

 

Assistant Prof., Balqaa Applied University, CS Instructor, Balqaa Applied University Jordan.

 

 

*Corresponding Author’s Email: salwa_mrayyan @ yahoo. com

Abstract:

Very simple method of proving Goldbach Conjecture, this proof which  is simply being just algebraic process by taking the statement of the conjecture " All  positive even integers   can be expressed as the sum of two primes. Two primes  such that  for  a positive integer are sometimes called a Goldbach partition (Oliveira e Silva)"and the researcher took this statement and build up the proof.

 

Keywords: Goldbach conjecture, Prime numbers, Even number.

Reference:


http://mathworld.wolfram.com/

Dunham, W, (1990). Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, p. 83.

Dickson, LE (2005). "Goldbach's Empirical Theorem: Every Integer is a Sum of Two Primes." In History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 421-424.

Goldbach, C, (1742). Letter to L. Euler, June 7.

Hardy, GH, (1999). Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea.

Oliveira E, Silva, T "Goldbach Conjecture Verification." http://www.ieeta.pt/~tos/goldbach.html.

Oliveira E, Silva, T, (2003a). "Verification of the Goldbach Conjecture Up to 2*10^16." Mar. 24. http://listserv.nodak.edu/scripts/wa.exe..

Oliveira E, Silva, T, (2003b) "Verification of the Goldbach Conjecture Up to 6×10^(16)." Oct. 3. http://listserv.nodak.edu/scripts/wa.exe..

Oliveira E, Silva, T, (2005a). "New Goldbach Conjecture Verification Limit." Feb. 5.

Oliveira E, Silva, T, (2005b) "Goldbach Conjecture Verification." Dec. 30. http://listserv.nodak.edu/cgi-bin/wa.exe A2=ind0512&L=nmbrthry&T=0&P=3233.

Schnirelman, LG, (1939). Uspekhi Math. Nauk 6, 3-8.

Shanks, D, (1985). Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 30-31 and 222.

Pogorzelski, HA, (1977). "Goldbach Conjecture." J. reine angew. Math. 292, 1-12.