Freitas Et Al

Freitas et al

Greener Journal of Agricultural Sciences Vol. 6 (3), pp. 087-092, March 2016.

 ISSN: 2276-7770 

Research Paper

Manuscript Number: 063014287



of Bradyrhizobium japonicum
(Kirchner, 1896) Jordan (1982) (Bradyrhizobiaceae) on Inga edulis Mart.


Freitas J*1, Mônico AZ1, Lírio
EJ2, Sarnaglia-Jnr VB2

Bonadeu F2Silva JBNF 3 & Hebling SA4


1Centro Universitário Norte do Espírito Santo – CEUNES/UFES. Rodovia BR
101 Norte, km. 60, Bairro Litorâneo, São Mateus – ES,
Brazil, 29932-540.

2Escola Nacional de Botânica Tropical, Instituto de Pesquisas Jardim
Botânico do Rio de Janeiro. Rua Pacheco Leão, 915, sala 107, Jardim Botânico,
Rio de Janeiro – RJ,
Brazil, 22460-038.

3Centro de Ciências e Saúde (CCS),
Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho 373, Bloco J
sala 25, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 22541-900.

4Faculdade Católica
Salesiana do Espírito Santo. Av. Vitória, a950, Forte São João, Vitória ES, Brazil, 29017-950.


that have the ability to fix atmospheric nitrogen through symbiosis with
bacteria known as rhizobia, have great importance from an economic and
ecological perspective, because in agricultural crops and reforestation, may
waive the use of nitrogenous fertilizers and provide more resistant seedlings,
minimizing impacts in nature and low cost. Bradyrhizobium
(Kirchner, 1896) Jordan (1982) (Bradyrhizobiaceae) is a rhizobium
which has association with several species of the subfamily Papilionoideae.
This study aimed to analyze the initial growth of Inga edulis Mart (Leguminosae, Mimosoideae) inoculated with B. japonicum
to test interaction in the subfamily Mimosoideae. We used the parameters:
height, stem diameter and number of expanded leaves; data analysis consisted of
the Shapiro-Wilk normality test. The inoculated seedlings showed a significant
difference for height and number of leaves, but no  significant difference for stem diameter.
From the results, it is inferred that I.
edulis presents positive interaction
with B. japonicum, i.e., the interaction of rhizobia extends to
Mimosoideae, which allows to infer that the interaction of rhizobia can be shown
as homologous synapomorphy of the clade Mimosoideae-Papilonoideae, which is
supported by molecular phylogenies. The results are compared with other studies
and the implications in the evolution of the clades of the Leguminosae are
discussed in phylogenetic studies. To corroborate the hypothesis, further
studies of species of different subfamilies of these clades should be tested in
order to verify that indeed this interaction is a homologous synapomorphy of
the clade or an apomorphy for Mimosoideae, Leguminosae and interaction with B. japonicum
has arisen more than once in the evolution scale of the family.


Keywords: Fabaceae, rhizobia, legume, agricultural

Post-review Rundown

  View/get involved, click [Post-Review Page]


BFG – The Brazil Flora
Group (2015) Growing knowledge: an overview of Seed Plant diversity in Brazil.
Rodriguésia 66: 1085–1113.


Barnett JP and Baker
JB (1991) Regeneration methods In:
Duryea MLE, Dougherty, PM (eds.)
Forest regeneration manual. London: Kluwer Academic
Publishers, pp 35


Barberi A, Carneiro MAC, Moreira FMS
and Siqueira JO (1998) Nodulação em Leguminosas florestais em viveiros no sul
de Minas Gerais.
Cerne 4 (1):145153.


Doyle JJ and Luckow MA (2003) The rest
of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant
Physiology 131:900–910.


Faria SM, Franco AA, Jesus RM, Menandro M de S, Baitello JB,
Mucci ESF, Dobereiner J and Sprent JI (1984). New nodulating legume trees from
southeast Brazil.  New Phytologist


Faria SM and Sprent JI (1994) Legume nodule development: an
evolutionary hypothesis. In: Sprent, JI and Mckey, D (Eds.). Advances in Legume
Systematics, 5: The nitrogen factor, Royal Botanical Garden, Kew, pp 33–39.


Green H, Larsen J, Olsson OA, Jensen DF and Jacobsen I
(1999) Suppression of the biocontrol agent Trichoderma harzianum by mycelium of
the arbuscular mycorrhizal fungus Glomus intraradices in toot-free soil.
Applied Environmental Microbiology 65 (4):1428–1434.


Gyaneshwar P et al.
(2011) Legume-Nodulating Betaproteobacteria: Diversity, Host Range, and Future
Prospects. The American Phytopathological Society 24 (11):1276–1288.


Hammer Ø, Harper DAT and Ryan PD (2001) Past:
paleontological statistics software package for education and data analysis.
Palaeontologia Electronica 4:1–9.


Jesus EC, Schiavo JÁ and Faria SM
(2005) Dependência de micorrizas para a nodulação de leguminosas arbóreas
Revista Árvore 29 (4):545552.


Jordan DC (1982)
Transfer of Rhizobium japonicum
Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root
nodule bacteria from leguminous plants.
International Journal of Systematic
Bacteriology 32 (1):136


Lírio EJ, Arnholz E, Hencker C, Roldi
MMC, Soares RB, Sarnaglia-Jr VB, Bonadeu F and Hebling S (2012) Efeito da
inoculação de Bradyrhizobium japonicum
(Bradyrhizobiaceae) sobre o desenvolvimento de Senna multijuga e Phaseolus
Natureza On line 10


Lojka B, Dumas L,
Preininger D, Polesny Z and Banout J (2010) The use and integration of Inga
edulis in agroforestry systems in the Amazon – review article.
Agricultura Tropica et Subtropica 43


Mendes SL and
Padovan MP (2000) A Estação Biológica de Santa Lúcia. Boletim do Museu de
Biologia Mello Leitão (N. série) 11/12:7


Miller SH, Elliot RM, Sullivan JT and
Ronson CW (2007) Host-specific regulation of symbiotic nitrogen fixation in Rhizobium leguminosarum biovar trifolii.
Microbiology  153 (9):3184


Moreira FMS (1994)
Fixação biológica do nitrogênio em espécies arbóreas In: Araujo RS, Hungria M (Eds) Microrganismos de importância
agrícola. Brasília: EMBRAPA-SPI pp 121-150.


Moreira FMS (2008)
Bactérias fixadoras de nitrogênio que nodulam Leguminosae. In: Biodiversidade
do solo em ecossistemas brasileiros. Moreira, F.M.S.; Siqueira, J.O. &
Brussaard, L. (Eds.), Lavras, UFLA, pp 621


Pennington TD (1997)
The Genus Inga. Botany. Royal
Botanical Garden, Kew.


Perret X, Staehelin C
and Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiology
and Molecular Biology Reviews 64:180


Ruiz-Díez B, Fajardo
S, Felipe MR de and Fernández-Pascual M (2012) Characterization of rhizobia
from legumes of agronomic interest grown in semi-arid areas of Central Spain
relates genetic differences to soil properties. Journal of Basic Microbiology


Shapiro SS and Wilk MB (1965) Na analysis
of variance test fornormality (complete samples).
Biometrika 52:591611.


Souchie EL, Campello EFC,
Saggin–Júnior OJ and Silva EMR (2005) Mudas de espécies arbóreas inoculadas com
bactérias solubilizadoras de fosfato e fungos micorrízicos arbusculares.
Floresta 35:329–334.


Souza LAG, Silva MF and Moreira FW
(1994) Capacidade de nodulação de cem leguminosas da Amazônia.
Acta Amazônica 24 (2):918.


Sprent, J.I (2001)
Nodulation in legumes. Royal Botanic Gardens, Kew, 156 p.


Steele KP and Wojciechowski MF (2003)
Phylogenetic analyses of tribes Trifolieae and Vicieae based on sequences of
the plastid gene matK (Papilionoideae: Leguminosae) In: Klitgaard BB and Bruneau A (eds.) Advances in Legume Systematics,
part 10, higher level systematics. Royal Botanic Gardens, Kew, pp 355


Taiz L and Zeiger E
(2004) Fisiologia Vegetal. Artmed Editora S.A., Porto Alegre.


Wang D, Yang S, Tang F
and Zhu H (2012) Symbiosis specificity in the legume: rhizobial mutualism. Cell
Microbiology 14 (3): 334–342.


Wojciechowski MF (2003) Reconstructing the
phylogeny of legumes (Fabaceae): an early 21st century perspective In: Klitgaard BB and Bruneau A (eds.)
Advances in Legume Systematics, part 10, higher level systematics. Royal
Botanic Gardens, Kew, pp 5


Wojciechowski MF,
Lavin Mand Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on
analysis of the plastid matK gene resolves many well-supported subclades within
the family. American Journal of Botany 91: 18461862.

Leave a Reply

Your email address will not be published. Required fields are marked *