Bahri Et Al

Bahri et al

Greener Journal of  Agricultural Sciences Vol. 4 (4), pp. 171-177, May 2014.

 ISSN: 2276-7770 

Research Paper

Manuscript Number: 031014140

DOI: http://dx.doi.org/10.15580/GJAS.2014.4.031014140


Photosynthetic Performance of Paulownia tomentosa (Thunb) Steud. Exposed to Heavy Metals Zinc and Cadmium

 

Nada Ben Bahri1*, Yousr Zaouchi1, Bochra Laribi1,2,

Salah Rezgui1, Taoufik Bettaieb1

 

National Agronomic Institute of Tunisia. 43, Av. Charles Nicolle-1082, Tunis, Tunisia.

2Higher  Agronomic Institute of Chott-Mariem, BP 47, 4042- ChottMeriem- Sousse, Tunisia.

 

*Corresponding Author’s Email: nbenbahri @ yahoo. fr, Tel: (+216) 71 28 71 10,

Fax: (+216) 71 79 93 91

Abstract:

The present study was carried out to assess the alteration in photosynthetic performance of Paulownia tomentosa seedlings produced in vitro and cultivated under glass house when exposed to trace metals: zinc (Zn) and cadmium (Cd). In this respect, Zn and Cd were added to the substrates of culture at various concentrations: Zn (250, 500, 750 and 1000 μM) and Cd (25, 50 and 75 μM). A non-supplemented substrate with metal salts was served as a control. The photosynthetic activity was evaluated through measurements of chlorophyll fluorescence and the photosynthetic pigments, namely chlorophyll a, chlorophyll b and total chlorophyll as well as the carotenoids. Main results showed that the initial fluorescence (F0) values were higher in plants grown on Zn added substrate compared to those grown in the presence of Cd. However, the Fv/Fm ratio which indicates the efficiency of photosystem II, ranged from 0.78 to 0.82 for all treatments. Additionally, the presence of 75μM Cd in the substrate stimulates the biosynthesis of chlorophyll pigments by increasing their proportions about approximately 196.77%, in comparison to the control. On the contrary, Zn significantly reduced the contents of these pigments by 9.45% compared to the control. Besides, when the Cd concentrations were 25, 50 and 75μM and Zn concentration was 250μM, the carotenoid contents increased up to 115.51%, 253.07%, 239.19% and 87.56% respectively, in comparison to the control, was noted. Overall, results of this study proved the ability of Paulownia tomentosa to maintain its photosystem activity even on Zn and Cd contaminated sites, despite the restrictive effect of Zn on the biosynthesis of photosynthetic pigments when its concentration exceeds 500 μM.

Keywords: Paulownia tomentosa, chlorophyll fluorescence, photosynthetic pigments, carotenoids, Zinc, Cadmium.

Reference:


Adriano D.C., 2001. Trace elements in
the Terrestrial Environment.
Springer
Verlag, New York. 866p.

Arnon D., 1949.
Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.
Plant Physiology 24:1-15.

Azzarello E.,Pandolfi C., Giordano C., Rossi M., Mugnai S. and Mancuso
S., 2012.
Ultra-morphological
and physiological modifications induced by high zinc levels in Paulownia
tomentosa
. Environmental and Experimental Botany 81:11-17.

Baker N.R. and Rosenqvist E.,
2004.
Applications of chlorophyll fluorescence can improve

crop production strategies: an examination of future
possibilities.
Journal
of Experimental Botany 55: 1607-1621.

Bettaieb T., Denden M. and Mhamdi
M., 2008.
Régénération in vitro et
caractérisation physiologique de variants somaclonaux de glaïeul (Gladiolus grandiflorus
Hort.) tolérants aux basses températures.
Tropicultura  26(1): 10-16.

Bjorkman O. and Demmig B., 1987.
Photon yield of O2 evolution and chlorophyll fluorescence
characteristics at 77°K among vascular plants of diverse origins.
Planta 170: 489-504.

Bounaqba S., 1998. Analyse des déterminants
de la tolérance à NaCl chez le blé tendre, le triticale et l’orge. Utilisation
de la fluorescence chlorophyllienne dans le diagnostic de l’état fonctionnel du
photosystèmeII. Thèse de Doctorat en physiologie végétale. Faculté des Sciences
deTunis.
230 p

Doumett S., Fibbi D., Azzarello
E., Mancuso S., Mugnai S., Petruzzelli G. and Del M., 2010.
Influence
of the application renewal of glutamate and tartrate on Cd,Cu, Pb and Zn distribution between contaminated
soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study. International
Journal of Phytoremediation 13: 1-17.

Faller P., 2005.  Mechanism of Cd2 + toxicity: Cd2
+
inhibits photoactivation of Photosystem II by competitive binding to
the essential Ca2+ site.  Biochimica and Biophysica Acta 1706: 158 -164.

Fornazier R.F., Ferrera R.R., Vitoria A.P., Molina S.M.G., Lea P.J. and Azevedo
R.A., 2002.
Effects of Cadmium on
antioxidant enzyme activities in sugar cane.Biology of Plants  45: 91-97.

Gisbert C., Ros R., De Haro A., Walker D.J., Pilar Bernal M., Serrano R.
and Navarro-Avino J., 2003.

A plant genetically modified that accumulates Pb is especially promising for
phytoremediation. Biochemical and Biophysical Research Communications 303:
440-445.

Hall J.L., 2002. Cellular mechanisms
for heavy metal detoxification and tolerance.Journal of experimental botany 53:
1-11

Lei L., Xiaoping H.,
Borthakur D. and Hui N., 2012.
Photosynthetic activity and
antioxidative response of seagrassThalassia hemprichii to trace metal
stress. Acta Oceanologica Sinica 31(3):98-108

Maxwell K. and Johnson G.N.,
2000.
Chlorophyll fluorescence-a practical guide. Journal of
Experimental Botany 51: 659–668.

Mysliwa-Kurdziel B. and Strzalka K., 2002. Influence of metals on biosynthesis of photosynthetic
pigments. In : Physiology and Biochemistry of Metal Toxicity and
Tolerance in Plants, Prasad M.N.V. et Strzalka K. (eds), Kluwer Academic
Publishers, Netherlands 201-227.

Paulsen H., 1997. Pigment ligation to
protein of the photosynthetic apparatus in higher plants.
Physiologia Plantarum 100: 760-768.

Perreault F., 2008.
Inhibition de la photochimie des photosystèmes II et I et modification de la
dissipation d’énergie induite par le dichromate et l’aluminium chez des algues vertes.
Université du Québec à Montréal. 158 p.

Pinto A.P., Mota A.M., de Varennes A. and Pinto F.C., 2004. Influence of organic matter on
the uptake of cadmium, zinc, copper and iron by sorghum plants.
Science of the Total Environment 326:239-247.

Prasad D.D.K. and Prasad A.R.K., 1987. Altered delta-aminolevulinic-acid metabolism by lead and mercury in germinating
seedlings of bajra (Pennisetum typhoideum).
Journal of Plant Physiology 127:241–249.

SAS Institute, 1999. SAS / STAT User’s Guide, version 8. SAS Institute Inc,
Cary, NC.

Sbartai H., Djebar
M.R., Sbartai I. and Berrabbah H., 2012.
Bioaccumulation
du Cd et du Zn chez les plants de tomates (Lycopersicon esculentum L.).
Compte Rendu Biologies 335:585–593.

Singh R.P., Dabas S.and Choudhary A., 1996. Recovery of Pb2+ caused inhibition of
chlorophyll biosynthesis in leaves of Vigna radiata (L.) Wilczej by
inorganic salts. Indian Journal of Experimental Biology 34: 1129–1132.

Sinha S., Sinam G., Mishra R.K., et al., 2010. Metal accumulation, growth,
antioxidants and oil yield of Brassica juncea L. exposed to different
metals. Eco-toxicology and Environmental Safety 73(6): 1352-1361.

Stankovic D., Nikolic
M.S., Krstic B. and Vilotic D., 2009. Heavy metal in the leaves of tree species
Paulownia elongate S.Y.Hu in the
region of city Belgrade. Biotechnol.&Bioequipment.Biotechnology &
Biotechnological Equipment23: 1330-1336.

Vassilev A., Nikolova A., Koleva L. and Lidon F., 2011. Effects of Excess Zn on Growth
and Photosynthetic Performance of Young Bean Plants. Journal of Phytology 3(6):
58-62

Walker C., Hopkin S., Sibly R. and Peakall D., 1996. Principles of ecotoxicology. Fourth
Edition. Taylor & Francis.

Wang J., Li W., Zhang C., Ke S., 2010. Physiological responses and detoxific mechanisms To Pb, Zn, Cu and Cd
in young seedlings of Paulownia fortunei. Journal of Environmental Sciences
22(12): 1916-1922.

Yang X.E., Long X.X., Ni W.Z. and Fu C.X., 2002. Sedum alfredii – a new zinc
hyperaccumulating plant ecotype found in China. Chinese Science Bulletin 47,
1003–1006.

Leave a Reply

Your email address will not be published. Required fields are marked *