Bulegeya Et Al


Bulegeya et al

Greener Journal of Agricultural Sciences

Vol. 11(2), pp. 98-107, 2021

ISSN: 2276-7770

Copyright ©2021, the copyright of this
article is retained by the author(s)







The effect of Potyvirus resistance loci from the maize
inbred line Oh1VI on development of maize lethal necrosis (MLN)



Victoria B. Bulegeya1*; Mark W.
Tryphone G. Muhamba3; Biswanath Das4; Peter
R. Thomison
 David M. Francis6;
Margaret. G. Redinbaugh



Agriculture Research Institute (TARI) – Dakawa Center, P.O.Box 1892, Morogoro,

States Department of Agriculture–Agricultural Research Service (USDA-ARS),
Corn, Wheat and Soybean Research, Wooster, OH 44691, USA;

of Crop Science and Horticulture, Sokoine University of Agriculture (SUA),
P.O.Box 3005, Morogoro, Tanzania

Maize and Wheat Improvement Center (CIMMYT), P.O.Box 1041, Village Market,
Nairobi 00621, Kenya

of Horticulture and Crop Science, The Ohio State
University, 2021 Coffey Rd, Columbus, OH 43210, USA.  

of Horticulture and Crop Science, The Ohio State University-Ohio Agriculture
Research and Development Center (OARDC), Wooster, OH 44691, USA 

Corn, Wheat and Soybean Research, Department of Plant Pathology, The Ohio State
University, Wooster, OH 44691, USA.






Article No.: 060421055

Type: Research


Maize lethal necrosis
(MLN), a viral disease currently affecting corn in East and Central Africa
is caused by a combined infection of Maize chlorotic mottle virus (MCMV) and
any maize infecting potyvirus. Most of African maize germplasm is
susceptible to the disease and there are no known sources of resistance.
Recombinant inbred lines (RIL) derived from Oh1VI, a line known for
multi-virus resistance with different QTL for potyvirus resistance on
chromosome 3, 6 and 10 were selected and screened against MLN under
artificial inoculation and natural infestation. Differences were observed
among genotypes and QTL groups at P=0.05 in all experiments except under
field inoculation. Genotypes with QTL combination of 3, 6 and 10 had at
least 20% reduction in MLN symptoms compared to a susceptible check. These
results provide useful baseline information on utilization of potyvirus
resistance genes for MLN resistance and control in Sub Saharan Africa.


Accepted:  06/06/2021

Published: 31/07/2021


*Corresponding Author

Victoria Bulegeya

E-mail: victoriabulegeya@ rocketmail.com



Maize; Maize lethal necrosis (MLN); Potyvirus; Genetic
resistance; Sub Saharan Africa




Return to Content       View  [Full Article – PDF]  

[Full Article – HTML]               [Full Article – EPUB]

Post-Publication Peer-review Rundown

View/get involved, click [Peer-review]





Adams, I. P., Miano, D. W., Kinyua, Z. M.,
Wangai, A., Kimani, E., Phiri, N., & Souza
R. (2013). Use of next
generation sequencing for the
identification and characterization of Maize chlorotic mottle virus and
Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant
62(4), 741-749.


Adams, I. P., Harju, V. A., Hodges, T., Hany,
U., Skelton, A., Rai, S.& Ngaboyisonga, C. (2014). First report of maize
lethal necrosis disease in Rwanda. New Disease Report29(22),


Chrisholm, S. T., Mahajan, S.K., Whitham, S.A., Yamamoto, M.L., &
Carrington, J.C. (2000) Cloning of the Arabidopsis RTM1 gene, which controls
restriction of long-distance movement of the tobaccoetch virus. Proceedings of National Academy of Science,
USA, 97,


De Groote, H., Oloo, F., Tongruksawattana, S.,
& Das, B. (2016). Community-survey based assessment of the geographic
distribution and impact of maize lethal necrosis (MLN) disease in Kenya. Crop
, 82, 30-35.


Gomez, P., Rodriguez-Hernandez, A.M., Moury, B. & Aranda, M .A.
(2009) Genetic resistance for the sustainable control of plant virus diseases:
breeding, mechanisms and durability. European
Journal of Plant Pathology
, 125,


Gowda, M., Das, B., Makumbi, D., Babu, R.,
Semagn, K., Mahuku, G., Babu, R., Semagn, K., Olsen, M. S., Bright, J. M.,
Beyene, Y & Prasanna, B. M.
(2015). Genome-wide association and
genomic prediction of resistance to maize lethal necrosis disease in tropical
maize germplasm. Theoretical and Applied Genetics128(10),


Gowda, M., Beyene Y., Makumbi, D., Segmagn K.,
Olsen M., Jumbo B., Biswanath, D., Mugo, S., Suresh, L. & Prasanna, B.
(2018). Discovery and validation of genomic regions associated with resistance
to maize lethal necrosis in four biparental populations. Molecular Breeding 38, 16. DOI 10.1007/s11032-018-0829-7


Jones, M. W., Redinbaugh, M. G., Anderson, R. J., & Louie, R.
(2004). Identification of quantitative trait loci controlling resistance to
Maize chlorotic dwarf virus. Theoretical
and Applied Genetics,
110, 48–57.


Jones, M. W., Redinbaugh, M. G., & Louie, R.
(2007). The Mdm1 locus and maize resistance to Maize dwarf mosaic virus. Plant Disease, 91, 185–190.


Jones, M. W., Penning, B. W., Jamann, T. M.,  Glaubitz, J.C., Romay C., Buckler, E.S &
Redinbaugh, M.G. (2018). Diverse chromosomal locations of Quantitative Trait
Loci for Tolerance to Maize chlorotic mottle virus in Five Maize Populations. Phytopathology, 0, 0. doi:10.1094/PHYTO-09-17-0321


Karanja, J., Derera, J., Gubba, A., Mugo, S
& Wangai, A. (2018) Response of selected Maize Inbred Germplasm to Maize
lethal Necrosis Disease and its causative viruses (Sugercane Mosaic Virus and
Maize Chlorotic Mottle virus in Kenya. The
Open Agriculture Journal
12, 215
-226. DOI: 10.2174/1874331501812010215


Kusia, E. S., & Villinger, I. P. M. (2015).
First report of lethal necrosis disease associated with co-infection of finger
millet with Maize chlorotic mottle virus and Sugarcane mosaic virus in
Kenya. Plant Disease99(6), 899-900.


Louie R (1980) Sugarcane mosaic virus in Kenya. Plant Disease 64,


Louie, R. (1986) Effects of genotype and inoculation protocols on
resistance evaluation of maize to Maize dwarf mosaic virus strains. Phytopathology, 76, 769-773.


Lübberstedt, T., Ingvardsen, C., Melchinger, A.
E., Xing, Y., Salomon, R., & Redinbaugh, M. G. (2006). Two chromosome
segments confer multiple potyvirus resistance in maize. Plant breeding125(4), 352-356.


Lukanda, M., Owati, A., Ogunsanya, P.,
Valimunzigha, K., Katsongo, K., Ndemere, H., & Kumar, P. L. (2016). First
Report of Maize chlorotic mottle virus Infecting Maize in the Democratic
Republic of the Congo. Crop Protection82, 30-35.


Mahuku, G., Lockhart, B. E., Wanjala. B., Jones,
M. W., Kimunye1, J. N., Stewart, L. S., Cassone, B. J., Sevgan, S., Nyasani, J.
O., Kusia, E., Kumar, L.P., Niblett, C. L., Kiggundu,  A., Asea, G., Pappu, H.R., Wangai, A.,
Prasanna, B.M. & Redinbaugh, M.G. (2015). Maize lethal necrosis (MLN), an
emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology, 105(7), 956-965.


Mahuku, G., Wangai, A., Sadessa, K., Teklemold,
A., Wegary, D., Ayalneh, D., Adams, I., Smith, J., Bottomley, E., Bryce, S.,
Braidwood, L., Feyissa, B., Regassa, B., Wanjala, B., Kimunye, N., Mugambi ,N.,
Monjero, K., Prasanna, M.  (2015). First
report of Maize chlorotic mottle virus and Maize lethal necrosis on maize in
Ethiopia. Plant Disease99(12), 1870.


Makone, S. M., Menge, D., & Basweti, E.
(2014). Impact of maize lethal necrosis disease on maize yield: a case of
Kisii, Kenya. International Journal of
Agricultural Extension
, 2(3),


Melchinger, A. E., Kuntze, L., Gumber, R. K.,
Lübberstedt, T., & Fuchs, E. (1998). Genetic basis of resistance to
sugarcane mosaic virus in European maize germplasm. Theoretical and
Applied Genetics
96(8), 1151-1161.


Niblett, C. L., & Claflin, L. E. (1978).
Corn lethal necrosis-a new virus disease of corn in Kansas. Plant
Disease Reporter
62(1), 15-19.


Redinbaugh, M. G., Jones, M. W., & Gingery,
R. E. (2004). The genetics of virus resistance in maize (Zea mays L.). Maydica49(3),


Redinbaugh, M. G., & Hogenhout, S. A.
(2005). Plant rhabdoviruses. In The World of Rhabdoviruses (pp.
143-163). Springer Berlin Heidelberg.


Redinbaugh, M. G., & Pratt, R. C. (2009).
Virus resistance. In Handbook of maize: Its Biology (pp.
251-270). Springer New York.


Redinbaugh, M.G. and Zambrano, J.L. ( 2014) Chapter 8: Control of Virus
Diseases in Maize. In: Advances in Virus
, vol. 90 (G. Loebenstein and N. Katis, eds.), Elsevier, New York


Semagn, K., Beyene, Y., Babu, R., Nair, S.,
Gowda, M., Das, B.,
A., Mugo, S., Mahuku, G., Worku, M., Warburton, M.L., Olsen, M., Prasanna, B.M. (2015). Quantitative trait loci mapping and molecular
breeding for developing stress resilient maize for sub-Saharan Africa. Crop Science, 55(4), 1449-1459.


Uyemoto, J. K., Bockelman, D. L., & Claflin,
L. E. (1980). Severe outbreak of corn lethal necrosis disease in Kansas. Plant
Disease (formerly Plant Disease Reporter)
64(1), 99-100.


Wangai, A. W., Redinbaugh, M. G., Kinyua, Z. M.,
Miano, D. W., Leley, P. K., Kasina, M., & Jeffers, D. (2015). First report
of maize chlorotic mottle virus and maize lethal necrosis in Kenya. Virology485,


Xia, X., Melchinger, A. E., Kuntze, L., & Lübberstedt, T. (1999).
Quantitative trait loci mapping of resistance to sugarcane mosaic virus in
maize. Phytopathology, 89(8),


Xiao, W. K., Zhao, J., Fan, S. G., Li, L., Dai, J. R., & Xu, M. L.
(2007). Mapping of genome wide resistance gene analogs (RGAs) in maize (Zea
mays L.). Theoretical and Applied
115, 501–508.


Xu, M. L., Melchinger, A. E., Xia, X. C., & Lubberstedt, T. (1999).
High-resolution mapping of loci conferring resistance to Sugarcane mosaic virus
in maize using RFLP, SSR, and AFLP markers. Molecular
and General Genetics,


Zambrano, J. L., Jones, M. W., Brenner, E.,
Francis, D. M., Tomas, A., & Redinbaugh, M. G. (2014). Genetic analysis of
resistance to six virus diseases in a multiple virus-resistant maize inbred
line. Theoretical and Applied Genetics127(4),


Zhang, S. H., Li, X. H., Wang, Z. H., George, M.
L., Jeffers, D., Wang, F. G., … & Yuan, L. X. (2003). QTL mapping for
resistance to SCMV in Chinese maize germplasm. Maydica48(4),




Cite this Article: Bulegeya VB; Jones MW;
Muhamba TG; Das B; Thomison PR; 
Francis DM; Redinbaugh MG (2021). The effect of Potyvirus resistance
loci from the maize inbred line Oh1VI on development of maize lethal necrosis
(MLN). Greener Journal of Agricultural
11(2): 98-107.


Leave a Reply

Your email address will not be published. Required fields are marked *