Sitta Et Al

Advertisements

Sitta et al

Greener Journal of Agricultural Sciences

Vol. 11(2), pp. 90-97, 2021

ISSN: 2276-7770

Copyright ©2021, the copyright of this
article is retained by the author(s)

https://gjournals.org/GJAS

 

 

 

 

 

 

 

Combining Ability for Resistance to Maize Lethal Necrosis Disease in
Kenya

 

 

1Sitta, B.J., 2Nzuve, F.M., 2Olubayo,
C., 2Muthomi, J.W. 2Muiru, W.M., 2Miano, D.W.

 

 

1Tanzania
Agricultural Research Institute (TARI) Dakawa Centre, P.O. Box 1892, Morogoro,
Tanzania.

2Department
of plant science and Crop Protection, University of Nairobi, P O Box 29053-
00625, Nairobi, Kenya.

 

 

 

ARTICLE INFO

ABSTRACT

 

Article
No.:
060221054

Type: Research

 

 

Maize is a natural host to more than 50
viruses including members of the Potyviridae group which in combination with
Maize Chlorotic mottle virus (MCMV) cause maize lethal necrosis leading to
high yield losses. A study involving an assortment of maize germplasm was
used to estimate the genetic effects attributable to the resistance to maize
lethal necrosis resistance. The maize genotypes were crossed in a North
Carolina design II to generate 25 crosses. The parents and their derivative
crosses were screened for their combining ability for MLN and associated
disease parameters. Among the parents involved in the study, only one parent
UON-2015-119 showed desirable GCA for all the traits implying diversity of
the rest of the material involved. Thus, the good combiners for the
different traits could be used to produce desirable transgressive segregants
to maximize the disease resistance. For the SCA effects, UON-2015- 50/
UON-2015-109, UON-2015-50 /UON-2015-112 and UON-2015-50 / UON-2015- 113
showed good values for all the disease parameters. These elite crosses had
the parent UON-2015- 50. The parent UON-2015- 50 showed poor GCA effects for
all the disease parameters. Also, the parent UON-2015-119 showed poor SCA
effects despite the desirable GCA effect for all the disease
parameters.  This implies that any
breeding method chosen should first accumulate favourable genes in
homozygous state while breaking the linkage blocks.  Also, non additive gene action
attributable to both additive x epistatic and dominance x dominance gene
interaction could be responsible for the resistance to the MLN.  The non additive gene action is also non
allelic and produces over-dominance which is non fixable. These superior
parents and crosses could be used to develop maize varieties to improve
maize production in Kenya.

 

Accepted:  03/06/2021

Published: 31/07/2021

 

*Corresponding
Author

Barnabas
Justo Sitta

E-mail:
barnabassitta@ gmail.com

 

Keywords:

General combining ability; specific combining ability; maize;
maize lethal necrosis disease.

 

 

 


 

 

 

 

 

REFERENCES

 

Abera
W., Shimelis H., Derera J., Worku M., and Laing, M. 2016Northern Leaf Blight
Response of Elite Maize Inbred Lines Adapted to the Mid-altitude Sub-humid
Tropics. Cereal Research Communications 44(1), pp. 141–152 (2016) DOI:
10.1556/0806.43.2015.037.

 

Apraku
B. B.
, Annor B., Oyekunle M., Akinwale
R.O., Fakorede M.A.B., Talabi A.O., Akaogu I.C., Melaku G., Fasanmad Y. 2015.
 Grouping of early maturing quality protein
maize inbreds based on SNP markers and combining ability under multiple
environments. Field Crops Research. 183:169–183

 

Apraku,
B. B., Oyekunle M., Fakorede, M. A. B., Vroh, I., Akinwale, R. O., Aderounmu,
M. 2013. Combining ability, heterotic patterns, and genetic diversity of
extra-early yellow inbreds under contrasting environments. Euphytica.
192:413–433. DOI 10.1007/s10681-013-0876-4

 

Asea, G., Kwemoi, K.B., Ebellu, M., Okanya,
S., Walusimbi, M.and Nakayima, A. 2012.
Combining ability and heritability for host resistance to Aspergillus flavus and Aflatoxin
accumulation in tropical mid-altitude maize.
Uganda Journal of Agricultural Sciences. 13 2: 21-37. ISSN
1026-0919

 

Baker RJ
(1978) Issues in diallel analysis. Crop Science 18(4): 533- 536.

 

Brigitte,
F.N. 1999. Factor Analysis of People Rather than Variables: Q and Other
Two-Mode Factor Analytic Models. PUB DATE 1999-01-21 NOTE 24p. Paper presented
at the Annual Meeting of the Southwest Educational Research Association (San
Antonio, TX, January 21-23, 1999).

 

CABI, 2016. Invasive species compendium,
Datasheets,Maps,Images,Abstracts and
full-textinvasive species of the
world.

 

Farag, H.I.A., Afiah, S.A. 2012. Analysis of
gene action in diallel crosses among some Faba bean Vicia faba L. genotypes
under Maryout conditions. Annals of Agricultural Science 571:37–46

 

Fasahat
P., Rajabi A., Rad J.M. and Derera J. 2016. 
Principles and Utilization of Combining Ability in Plant Breeding. Biom
Biostat Int J 41:00085. DOI:10.15406/bbij.2016.04.00085

 

Gemechu
AL, Chiemsombat P, Attathom S, Reanwarakorn K, Lersrutaiyotin R (2006). Cloning
and sequence analysis of coat protein gene for characterization of sugarcane
mosaic virus isolated from sugarcane and maize in Thailand. Arch. Virol. 151:
167-172.

 

Gowda,
M., Das, B., Makumbi, D., Babu, R., Kassa Semagn, K., Mahuku, G., Olsen, M.S.,
Bright, M.J., Beyene, Y., Prasanna, M.B., (2015). Genome
wide association and genomic prediction of
resistance to maize lethal necrosis disease in tropical maize germplasm.
TheorAppl Genet.
127:867–880. DOI 10.1007/s00122-014

 

Kamara,
M., El-Degwy, I. S. and Koyama, H. 2014. Estimation combining ability of some
maize inbred lines using line × tester mating design under two nitrogen levels.
AJCS 8(9):1336-1342.

 

Kinfe
H, Tsehaye Y. 2015. Studies of heritability, genetic parameters, correlation
and Path coefficient in elite maize hybrids. Academic Research Journal of
Agricultural Science and Research 3(10), 296-303. Doi:10.14662/ARJASR2015.062.

 

Kiyyo, J. G. and Kusolwa, P. M. 2009. Estimation of heterosis and
combining ability in maize Zea mays L. for maize lethal necrosis MLN
disease. Journal of Plant Breeding and Crop Science.
99: 144-150. DOI:
10.5897/JPBCS2017.0657.

 

Legesse, B.W., Pixley, K.V., Botha, A.M. 2009.  Combining ability and heterotic grouping of
highland transition maize inbred lines. Maydica. 54 1-9.

 

Makanda I,
Tongoona P, Derera J, Sibiya J, Fato P (2010) Combining ability and cultivar
superiority of sorghum germplasm for grain yield across tropical low- and
mid-altitude environments. Field Crops Research 116: 75-85.

 

Masuka,
B., Atlin, Gary N., Olsen Mike, Magorokosho Cosmos, Labuschagne Maryke, Crossa
Jose, Bänziger Marianne, Pixley Kevin V., Vivek Bindiganavile S., Biljon Angela
von, Macrobert John, Alvarado Gregorio, Prasanna B.M., Makumbi Dan, Tarekegne
Amsal, Das Bish, Allah Mainassara Zaman, and Cairns Jill E. 2017. Gains in Maize Genetic Improvement in Eastern
and Southern Africa: I. CIMMYT Hybrid Breeding Pipeline. Crop Sci.
57:168–179. doi: 10.2135/cropsci2016.05.0343

 

Murtadha,
M.A., Ariyo, O.J., Alghamdi, S.S. 2016. Analysis of combining ability over
environments in diallel crosses of maize Zea mays.
http://dx.doi.org/10.1016/j.jssas.2016.01.004

 

Salami,
A.E and Agbowuro, A.O. 2016. Gene Action and Heritability Estimates of Grain
Yield and Disease Incidence Traits of Low-N Maize (Zea mays L.) Inbred lines.
Agriculture and Biology Journal of North America ISSN Print: 2151-7517, ISSN
Online: 2151-7525, doi:10.5251/abjna.2016.7.2.50.54 © 2016, ScienceHuβ,
http://www.scihub.org/ABJNASemagn, K., Beyene Y., Babu R., Nair S., Gowda M.,
Das B., Tarekegne A, Mugo S., Mahuku G., Worku M., Warburton M. L., Olsen M.,
and Prasanna, B. M.. 2014. Quantitative
Trait Loci Mapping and Molecular Breeding for Developing Stress Resilient Maize
for Sub-Saharan Africa. Crop Sci. 55:1–11 (2015). Doi:
10.2135/cropsci2014.09.0646

 

Singh RK,
Chaudhary BD (1985) Biometrical methods in quantitative genetic analysis,
Kalyani Publishers, New Delhi, India.

Sitta,
J. , Nzuve, F. M. , Olubayo, F. M. , Mutinda, C., Muiru, W. M. , Miano, D. W.,
Muthomi, J. W. & Leley, P. K. 2017
.
Response of Assorted Maize Germplasm to the Maize Lethal Necrosis Disease in
Kenya. Journal of
Plant Studies
, [S.l.], v. 6, n. 2, p. p65, july 2017. ISSN
1927-047X.

 

Solanki,
Z.S. and Gupta, D. 2001. Combining Ability and Heterosis Studies for Seed Yield
and its Components in Sesame. Sesame
and Safflower Newsletter. Pg 9-12 

 

Souza, I.
R. P. de, Schuelter, A. R., Guimara˜es, C. T., Schuster, I., Oliveira, E. de,
and Redinbaugh, M. 2008. Clustering of QTL conferring SCMV resistance in
tropical maize. Hereditas 145: 167_173. DOI: 10.1111/j.2008.0018-0661. 02006.x)

 

Vacaro,
E., Neto, J. F. B., Pegoraro, D. G., Nuss, C. N. and Conceição, L. D. H. 2002. Combining ability of twelve maize
populations. Pesq. agropec. bras., Brasília, 37 1: 67-72

 

Wilcoxson, R.D. Skovmand, B. and Atif, A.H., 1975,
Evaluation of wheat cultivars for ability to retard development of stem rust. Annual Applied Biology.  80:275-281.

 

Wu, J.C., C.X. Xu, H.M. Chen, J. Tan, X.R. Han, B.H.
Huang, and X.M. Fan. 2007. Studies on combining ability and het­erotic grouping
of 24 quality protein maize inbreds and four temperate representative inbreds
of Chinese major heterotic groups. (In Chinese, with English abstract.) Chin.
Agric. Sci. 40:1288–1296.

 

Zambrano, J. L., Francis, D. M., and Redinbaugh, M. G.
2013. Identification of resistance to Maize rayado fino virus in maize
inbred lines. Plant Dis.
97:1418-1423. http://dx.doi.org/10.1094 / PDIS-01-13-0037-RE

 

Zambrano, J. L., Jones, M. W.,
Brenner, E., Francis, D. M., Tomas, A., Redinbaugh, M. G.  2014. 
Genetic analysis of resistance to six virus diseases in a multiple virus
resistant maize
inbred line.
Theor Appl Genet.
127:867–880. DOI 10.1007/s00122-014-2263-5

 


 

Cite this Article: Sitta, BJ; Nzuve, FM; Olubayo, C; Muthomi, JW; Muiru, WM; Miano, DW
(2021). Combining Ability for Resistance to Maize Lethal Necrosis Disease in
Kenya. Greener Journal of Agricultural
Sciences
11(2): 90-97.

 

Leave a Reply

Your email address will not be published. Required fields are marked *